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Abstract-An exact similarity solution is provided for the mass transfer from a vertical surface to a falling 
film. The velocity field of the accelerating gravity-driven film is exactly represented by a Falkner-Skan 
type stream function 1; from which the local Nusselt number is obtained as 

Nu, = (&~‘.{~exp[ -Sc[f(r)dz]dt~‘. 

Accurate numerical values are given for Schmidt numbers from 0.001 to 1000, while simple asymptotic 
formulas are provided for the extreme Schmidt numbers. 

INTRODUCTION 

THE FLOW of liquids in thin films is a well-known 
phenomenon in everyday life as well as in numerous 
technological applications. Of particular importance, 
for instance in chemical engineering, is the mass 
or heat transfer associated with many falling film 
concepts. 

The solid-liquid mass transfer between a plane 
surface and a falling film has been dealt with theoret- 
ically and experimentally in several papers. Kramers 
and Kreyger Cl] and Oliver and Atherinos [2] studied 
the dissolution of a soluble wall and the subsequent 
penetration of the solute into the liquid film. Iribarne 
et al. 133 and Wragg et al. [4] considered the diffusion- 
controlled electrolytic mass transfer between a wall 
and a falling film, while Alekseenko et al. [S] derived 
the wall shear stress from measured data for the 
diffusion-controlled electrolytic current. 

The theoretical considerations in refs. [l-5] have 
naturally been based on some simplifying assump- 
tions. Two of the basic simplifications are that: (a) the 
flow field is fully developed in the sense that the 
streamwise derivatives of the velocity components are 
negligible; and (b) the gradients of concentration exist 
only near the wall where the shear stresses in the 
liquid do not differ appreciably from the value 7, at 
the wall. With these assumptions, the film thickness 
h is taken as being a constant, and the velocity 
components are approximated as u = yz,/p and u = 0 
in the actual near-wall region. Using the above 
simplifications Kramers and Kreyger [l] derived an 
explicit analytic expression for the surface mass flux, 
which has subsequently been employed and modified 
by others [Z-S]. However, their solution is neither 
applicable when the concentration boundary layer 
penetrates deeply into the liquid phase nor to develop- 
ing film flows. 

In this paper we consider the mass transfer between 
a gravity-driven accelerating film and a vertical sur- 
face. The intention of the analysis is to demonstrate 
that the similarity solution of Fage and Falkner 
[6] for the heat transfer behaviour of a laminar 
momentum boundary layer on an isothermal wedge, 
also solves the concentration boundary layer in devel- 
oping liquid films. The similarity solution which 
in this way is made available, also applies if the 
concentration profile spreads into parts of the film in 
which the shear stresses are significantly smaller than 
that at the wall. 

PHYSICAL MODEL AND BASIC EOUATIONS 

We consider an accelerating film of a Newtonian 
liquid flowing down along a smooth vertical surface, 
as depicted in Fig. 1. Uniform flow enters the system 
at x = 0, the total volumetric liquid feed being denoted 
by Q. The flow is laminar and the free surface of the 
film is wavefree. Provided that the thickness 6(x) of 
the viscous boundary layer which develops along the 
wall is smaller than the local film thickness h(x), a 
quasi-one-dimensional inviscid flow exists between 
the momentum boundary layer and the free streamline 
bordering the constant-pressure atmosphere. 

The two flow regimes, which are qualitatively 
different, can be treated separately as in aerodynamic 
analyses. For the inviscid part of the flow the Bernoulli 
equation yields 

$7’ - gx = constant (1) 

while the viscous flow within the boundary layer is 
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NOMENCLATURE 

concentration [kg m - 3] X streamwise coordinate [m] 
molecular diffusion coefficient [m’s_ ‘1 Y cross-stream coordinate [m]. 
dimensionless stream function, equation 

(7a) Greek symbols 
gravitational acceleration [m s- ‘1 6 boundary layer thickness [m] 
local film thickness [m] 6, boundary layer displacement thickness, 
integral, equation (12b) J:(I -f’)dtl 
average mass transfer coefficient, equation rl dimensionless coordinate, equation (7b) 
(15) [ms-i] 0 dimensionless concentration, equation (7~) 
streamwise length for averaging k P molecular viscosity [kg m- ’ s- ‘1 
exponent V kinematic viscosity, p/p [m2 s- ‘3 

Nu, local Nusselt number, equation (13) shear stress [kgm- ’ s-‘1 
Q volumetric flow rate [m’s_ ‘1 stream function [m’ s- ‘1. 
Re, local Reynolds number, xU(x)/v 
SC Schmidt number, v/D Subscripts 
U free stream velocity [m s- ‘1 C concentration 
u streamwise velocity component [m s- ‘1 0 condition outside the boundary layers 
V cross-stream velocity component [m s- ‘1 W condition at the wall. 

In accordance with classical boundary layer argu- 
ments, the streamwise diffusion of momentum has 
been neglected in equation (2). Using the same sort 
of arguments for the concentration conservation 
equation, the governing equation reduces to 

FIG. 1. Coordinate system and notations. 

governed by the reduced Navier-Stokes equation for 
incompressible flow 

au au azu 
uax+Vdy=g+vG 

with the boundary conditions 

u(x, 0) = 0 (3a) 

v(x, 0) = 0 (3b) 

u(x, y) -+ U(x) as y --) 6. (3c) 

Here, we have implicitly assumed that the diffusion 
rate at the wall results in a normal velocity component 
which is negligible. 

uc+o&=& 
ax ay ay2 

where c(x,y) denotes the concentration distribution 
and D is the diffusion coefficient of the diffusing 
species in the liquid. The incoming flow is assumed 
to have a uniform concentration c, of the diffusing 
species, while the concentration c, is maintained at 
the wall. Thus, the relevant boundary conditions for 
the concentration equation (4) become 

c(x, 0) = c, (5a) 

c(x,y)-rc, as y-+6, (5b) 

where 6, denotes the thickness of the concentration 
boundary layer. Considering the dissolution of a 
soluble wall [l, 23, c, represents the saturation 
concentration, or solubility, of the wall substance in 
the liquid. In the electrochemical case [3-53, however, 
the concentration of reacting ions at the wall (i.e. the 
electrode) is assumed negligible, i.e. c, z 0. 

Assuming zero velocity (and infinite film thickness) 
at the entrance x = 0, the simple solution 

U(x) = J(2gx) (6) 

is readily derived from the Bernoulli equation (1). 
Andersson and Ytrehus [7] recently recognized the 
formal equivalence of the inviscid velocity distribution 
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(6) with the freestream variation U(x) w x” considered 
by Falkner and Skan [8] for laminar boundary layer 
flow along wedge-shaped bodies. Following ref. [7], 
we introduce the similarity variables f and q 

(74 

Ub) I(q;Sc) = ~exp[ - Sc[l(l)dz]d& (12b) 

where I// is the physical stream function. In accordance 
with equation (6), the power m is set equal to l/2 in 
the present context. Anticipating that similarity can 
be achieved also for the con~ntration distribution, 
we assume 

CCC Y) = c, + (c, - c,) 0 (r) (7c) 

where &,I) is a dimensionless concentration. 
The momentum and concentration equations can 

now be rewritten in terms of the dimensionless depen- 
dent variables 1 and 0. The resulting ordinary differ- 
ential equations and boundary conditions are 

f”’ + ff” + $1 - f’2) = 0 (8) 

8”+Sc.ftY=O (9) 

“f-(O) = f’(0) = 0 UOaI 

f’(q) ---* 1 as 4 --) 00 (lObI 

e(O)= 1 (1 la) 

B(~)-+Oas~-+co. (1 lb) 

Evidently, the Schmidt number SC = v/D is the only 
explicit parameter in the transformed problem. 

It should be emphasized that the momentum equa- 
tion (8) is uncoupled from the mass transfer equation 
(9), while the concentration field 8 is on the other 
hand coupled to the velocity field through the stream 
function f in equation (9). 

THE EXACT SOLUTION 

The momentum boundary layer problem, i.e. equa- 
tion (8) subject to the boundary conditions (lo), has 
been solved recently by Andersson and Ytrehus [7]. 
The numerical solution is exact in the sense that 
the partial differential equation (2) in the primitive 
variables u and u is exactly represented by the ordinary 
differential equation (8) in the variable J; whose 
numerical solution can be obtained to an arbitrary 
degree of accuracy. 

By taking advantage of the formal equivalence of 
the concentration boundary layer problem (9,11) with 
the thermal boundary layer problem along a semi- 
infinite wedge, the solution of the thermal problem 
may be carried directly over to the mass transfer 
problem in accelerating film flow. With the solution 

of the velocity field known, the solution of equation 
(9) subject to the boundary conditions (11) can be 
written as 

/j(q) = 1 -IO 
I(o0; SC) (124 

where I(q; SC) represents the integral term 

The integral relation (12) was originally derived by 
Pohlhausen [93 for the flat plate thermal boundary 
layer, which represents the special case m = 0 of 
the Falkner-Skan wedge-flow similarity solutions. 
However, solution (12) may represent any flow along 
an isothermal wall in which the external velocity V(x) 
is proportional to xm [6]. The dependence on the 
wedge angle is thus implicitly taken into account 
through the stream function f: 

Of particular interest in technological applications 
is the heat transfer between the wedge and the fluid, 
which in the present context is analogous to the mass 
transfer between the vertical wall and the liquid film. 
The local mass transfer is conveniently expressed in 
dimensionless form as a local Nusselt number 

ac &+_L - 
c, - c‘3 0 aY y=o 

which is obtained from solution (12) as 

03) 

(144 

F(O) = -l/Z(co;Sc) (14b) 

where Re = xU(x)/v is the local Reynolds number 
and 8’(O) is the dimensionless concentration gradient 
evaluated at the wall. For the particular parameter 
value m = l/2 the heat transfer relation for wedge 
surfaces of Fage and Falkner [6] as cited in ref. 
[lo, p. 2461 is identical in form to the present mass 
transfer relation (14). 

It may sometimes be convenient to express the 
mass flow rate between the solid surface and the 
liquid film in terms of a ~dimensional} average mass 
transfer coefficient 

The average surface coefficient calculated from equa- 
tion (14) becomes 

15 = (32gv2/9L)“4/[sc ’ i(c0; SC)]. (16) 

Finally, it should be emphasized that the preceding 
analysis for mass transfer into a falling film may 
also be applied to the corresponding thermal-energy 
problem, i.e. the heat transfer through the film-wall 
interface. However, in order to achieve the similarity 
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Table 1. Computed values of the integral 
I(co;Sc) and local Nusselt number. The 
required data from the exact solution of 
the velocity field [7] are 6, = 0.74017 and 

f; = 1.03890 

SC I(m; SC) Nu, Re; ‘I2 

0.001 4.03663( + 1) 
0.003 2.36101(+ 1) 
0.006 1.69029( + 1) 
0.01 1.32508( + 1) 
0.03 
0.06 
0.1 
0.3 
0.6 

3 
6 

10 
30 
60 

100 

z 
1000 

7.93772‘ ’ 
5.80325 
4.63550 
2.91726 
2.21012 
1.81339 
1.20403 
9.37848( - 1) 
7.82520( - 1) 
5.33468( - 1) 
4.20252( - 1) 
3.52900( - 1) 
2.42966( - 1) 
1.92224( - 1) 
1.61819( - 1) 

2.14542( - 2) 
3.66804( - 2) 
5.12354(-2) 
6.53566(-2) 
1.09103( - 1) 
1.49231(- 1) 
1.86825( - 1) 
2.96863( - 1) 
3.91845(-lj 
4.77572( - 1) 
7.19274(- lj 
9.23417( - 1) 
1.10671 
1.62339 
2.06073 
2.45402 
3.56440 
4.50530 
5.35183 

of the transport equations for heat and mass, it is 
required that heat generation due to viscous dissi- 
pation is negligible in the thermal energy equation. 
Then, if the Schmidt number is replaced with the 
Prandtl number, the solution for e(q) in equation (12) 
is the dimensionless temperature distribution. 

RESULTS AND DISCUSSIONS 

The final results of the present analysis, i.e. equa- 
tions (14) and (16), are exact provided that the integral 
I(co; SC) is computed from equation (12b) using an 
exact representation of the dimensionless stream func- 
tion f as obtained from the momentum equation (8). 
Numerical values of the wall gradient f?‘(O), which is 
the reciprocal of the integral Z(m; SC), has been 
tabulated by Evans in his textbook [l l] for a wide 
range of the parameters m and SC. These extensive 
tables contain results for m = 3/7 and 2/3, while the 
particular parameter value m = l/2 is unfortunately 
not included. An accurate integration algorithm for 
the evaluation of integral (12b) was therefore con- 
structed, in accordance with the procedure outlined by 
Evans [ 121. With the non-dimensional displacement 
thickness 6, = jr (1 -f’) dq and wall shear stress 
fg =f”(O) known from the similarity solution [7] of 
the velocity equation, I(co; SC) and Nu, were evaluated 
for Schmidt numbers ranging from 0.001 to 1000. The 
numerical values are given in Table 1. Corresponding 
calculations for m = 3/7 agreed in the fifth significant 
digit with the values obtained by Evans [ll], thus 
indicating the accuracy of the results. 

While Table 1 gives values of the reciprocal of the 
wall gradient, similarity profiles of the dimensionless 

concentration 6 is displayed in Fig. 2, from which the 
Schmidt number effect is evident. For SC << 1 the 
concentration boundary layer extends far into the 
inviscid flow, while for high Schmidt numbers the 
concentration layer is significantly thinner than the 
viscous boundary layer. This qualitative difference 
between high and low Schmidt number results is also 
exhibited in Fig. 3, where the computed values of the 
local Nusselt number in Table 1 have been plotted vs 
the Schmidt number. 

In the limiting case SC + 0 the velocity boundary 
layer becomes so thin compared to the concentration 
boundary layer, that it can be neglected in solving 
the concentration equation. The resulting asymptotic 
solution 

Nu, = (+R,,c~~ (17) 

is a well-known result for the heat transfer rate in 
Falkner-Skan wedge flow boundary layers; see e.g. 
ref. [ll]. 

In the high Schmidt number (low diffusivity) limit, 
the concentration gradients are contained within the 
innermost part of the velocity boundary layer. For 
this Schmidt number regime, Evans [l l] derived an 
asymptotic expansion for the reciprocal wall gradient 
in inverse powers of SC. Keeping the highest order 
term only, the local Nusselt number becomes 

where the required value of the gamma function is 
r(1/3) = 2.67894. Thus, for the particular parameter 
value m = l/2 we obtain 

Nu = 0 540542Reli2 Sc’13 x . x 

in the limit SC + co. 

(19) 

The characteristic asymptotes (17) and (19) are 
shown as lines in Fig. 3. It is evident that the 
asymptotic formulas closely approximate the exact 
solution (symbols) in the extreme Schmidt number 
regimes, while more accurate expressions are required 
for Schmidt numbers of the order unity. 

It may be worthwhile to compare the expression 
for the surface coefficient derived by Kramers and 
Kreyger [l] 

E = 0.914[QgZv4/I?]“9 sc-2’3 

with the present solution. In the limit SC + co equ- 
ation (16) becomes 

E = 0.857[gv2/L]"4 SC-'/~ 

while Em SC-“~ in the low Schmidt number range. 
Being analogous to the corresponding heat transfer 
result, equation (20) is sometimes known as the 
LCveque solution. 
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FIG. 2. Dimensionless concentration profiles e(q) (solid lines) and velocity profile f’(q) (broken line). 

10-l 

FIG. 3. The dependence of local Nusselt number on Schmidt number. The symbols denote exact results 
and the lines represent the extreme asymptotes (17) and (19). 

It is observed that the asymptotic formula (21) 
exhibits the same Schmidt number dependence as 
equation (20). The analysis of Kramers and Kreyger 
was based on the assumption of a very thin concen- 
tration layer, i.e. that the solute penetration is restric- 
ted to a region with approximately linear velocity 
variation. Examination of Evan’s [ 1 l] asymptotic 
expansion, reveals that the high Schmidt number 
asymptotes (18), (19) and (21) correspond to the 
neglection of all but the leading term f’(q) = q .f:i in 
the power series for I’. 

Even though both equations (20) and (21) are based 
on a linear variation of the velocity through the 
concentration layer, the flow fields are still quite 
different. While Kramers and Kreyger assumed that 
v = 0 and &@x = 0, none of these assumptions were 
imposed in the preceding analysis. 

Finally, it is important to be aware of a limitation 
of the present results. For solutions (12) and (14) to 
be valid, the solution domain must be sufficiently 
restricted in the downstream direction for the bound- 

ary conditions (3~) and (5b) to be satisfied in some 
asymptotic sense within the total thickness of the film. 
It is thus required that 6 and 6, should be less than 
the local film thickness h(x). 

Andersson and Ytrehus [73 showed that the region 
in which an inviscid flow exists between the velocity 
boundary layer and the surrounding atmosphere, 
extends a distance x, in the downstream direction, x, 
being given as 

x, = 0.1972(3vQ/g)“3 Q/v. (22) 

Here, (3vQ/g)‘13 is recognized as the thickness of the 
fully developed laminar film and Q/v is the film 
Reynolds number. 

For SC >> 1 the concentration layer is much thinner 
than the momentum boundary layer, i.e. 6, CC 6, and 
both conditions (3~) and (5b) are satisfied within the 
streamwise range 0 < x < x,. For SC << 1, however, 
6, becomes significantly greater than 6, and the 
concentration gradients will therefore reach the film 
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surface upstream of x,. In order to ensure the validity 
of equation (5b), the streamwise extension of the 
solution domain should therefore be further restricted 
for Schmidt numbers below unity. 

CONCLUDING REMARKS 

The primary purpose of this paper is to present a 
new similarity solution for the diffusion of mass (or 
heat) from a vertical wall to a gravity-driven liquid 
film. The main contribution may be summarized as 
follows. 

(1) An exact similarity solution for mass transfer is 
provided, in which both velocity components have 
been exactly represented by the solution of the 
Falkner-Skan equation for the particular parameter 
value m = l/2. 

(2) Asymptotic formulas for the local Nusselt num- 
ber in the extreme Schmidt number regimes are 
derived. Comparison with the exact solution reveals 
that the Schmidt number dependence decreases from 
SC”* to SC”~ over the whole range. 

(3) Accurate numerical values of the local Nusselt 
number are provided, covering the range of Schmidt 
numbers from 0.001 to 1000. 

(4) The exact similarity solution constitutes a refer- 
ence against which any approximate solution may be 
checked. 
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DIFFUSION A PARTIR D’UNE PAR01 VERTICALE DANS UN FILM LIQUIDE 
TOMBANT AVEC ACCELERATION 

R&sum&Une solution exacte de similitude est donnke pour le transfert massique g partir d’une surface 
verticale vers un film tombant. Le champ de vitesse du film ac&l& soumis B la pesanteur est exactement 
reprtsente par une fonction de courant ,f de type Falkner-Skan d’oi est dkduit le nombre de Nusselt local : 

Nu, = (iReX)“‘*{ exp[ -Sclf(z)dz]dt}‘. 

Des valeurs numkriques prircises sont donnkes pour des nombres de Schmidt entre 0,001 et 1000, et des 
formules asymptotiques simples sont don&es pour les nombres de Schmidt extr&mes. 

DIFFUSION VON EINER SENKRECHTEN WAND IN EINEN BESCHLEUNIGTEN 
RIESELFILM 

Zusammenfassung-Eine exakte Ahnlichkeitsbeziehung fiir den Stofftransport von einer senkrechten Wand 
in einen Rieselfilm wird vorgelegt. Das Geschwindigkeitsfeld des durch Schwerkraft beschleunigten 
Rieselfilms wird exakt durch eine Stromfunktion J vom Falkner-Skan-Typ wiedergegeben, aus der die 
iirtliche Nusselt-Zahl wie folgt berechnet wird : 

Nu, = (;Rq)“.{ l exp[-.Sc[j+) dz]d,)’ 

Exakte Zahlenwerte werden fiir Schmidt-Zahlen von 0,001 bis 1000 angegeben, wiihrend einfache 
Naherungsgleichungen fiir extreme Schmidt-Zahlen vorgelegt werden. 
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4M0@Y3MII OT BEPTMKAJIbHOfi CTEHKM B IUIEHKY XKMflKOCTM, CTEKAIOIL(YI0 C 
YCKOPEHMEM 

,hlOT$Wllll--npIiBeAeHO aBTOMOAeAbHOe pemeHHe AAH MaCCOnepeHOCa OT BepTEiKaJIbHOti nOBepXHOCT8 

B c-reramuyro nneary. none c~opocm nnemw, ymeraekfoii ycKopewieh4 cHAb1 TSKCCTU, npencTaeneH0 

~y~KulreBToKaTana~onK~epa-CK3Ha~rc~Ko~opoBnony~aeTcnnoKanbHoe~acnoHyccenbTaB BsiAe 

Nu, = (jRe,)“* {[exp [ -Sc ~fk) dz] drj-’ 

%C,,eHHbIe3HaVeH&,5IAaHblAAS '#ACeA UMHATa OTo,@,l A0 l~,BTO BpeMfl KaK npOCTbIeaCHMnTOTW 

4eCKHeSaBI(CHMOCTI1"pcACTaB~eHblAAK3KCTpcM~bHbIX~~CeA~M~ATa. 
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